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THE FORCED FLOW OF A ROTATING VISCOUS LIQUID
WHICH IS HEATED FROM BELOW

By T. V. DAVIES
King’s College, London

(Communicated by G. Temple, F.R.S.—Received 11 December 1952—Read 23 April 1953)
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A liquid is contained in a cylindrical vessel and is subject to heating on the horizontal base of the
vessel. The problem of the forced flow arising from the heating has been investigated in the case
when the heating function is symmetrically arranged about the central axis. It is found that the
relative forced flow tends to become zonal in character when the vessel rotates at a sufficiently
high angular velocity. This relative zonal motion is principally in the direction of the rotation
except near the outer portion of the fluid where it is in the opposite direction, the former being
‘westerlies’, the latter ‘easterlies’. The easterlies are due to the non-linear inertia terms in the
equations of motion. This description of the velocity field is used because the experiment described
above has considerable meteorological significance.
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LisT OF sYMBOLS INTRODUCED IN THE TEXT
Page or equation
where first used

U a representative fluid velocity in the atmosphere p. 84
Cr the equatorial surface speed p. 84
P U/Cy Rossby number p. 84
<@ ¢,z cylindrical co-ordinates p. 84
- Uy, Ug, Wy velocity components in cylindrical co-ordinates referred to fixed space
;5 > axes p- 84
@) E Uy Uy W velocity components in cylindrical co-ordinates referred to axes moving
= with angular velocity €2 (1-7)
E 8 V2 total pressure (1-7)
~w bo hydrostatic pressure ' (1-7)
)2 Y/ departure from hydrostatic pressure (1-7)
g0 o1 total density (1-7)
gs . Lo P constant density of liquid; departure from constant density (1-7)
82} ° 15T, total temperature; constant temperature - (1-5)
:E'§ F,Fy, F,  viscous terms in equations of motion (1-1), (1-2), (1-3)
& X1 divergence of the velocity vector (1-4)
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82 T. V. DAVIES ON THE FORCED FLOW OF A
¢, specific heat

k thermometric conductivity

D, viscous dissipation

a inverse of coefficient of cubical expansion

Y7 viscosity

g gravitational acceleration

Q angular velocity of dishpan

U,(2),V(z),W;(z) wvertical variations of (u, v, w)
p1(2), P(2),T,(z) vertical variations of p, p and T’

B B a parameter; the infinite set of £ values
ks 7, depth of fluid (2-15); radius of cylinder
a, a,, a, non-dimensional geometric parameters
¢ a non-dimensional height

H a parameter

KkyKky,ky, A parameters of dimension velocity

A, B, constants of integration

uy(€),0,(6),w,(§) terms in the expansion of (z,v,w) in ascending powers of a
(2:24), (2-24), (3-33

Q(7) a heat distribution function

Q* net flow of heat through base of cylinder

R rotation Reynolds number

7 square root of R

Cy,S,,¢,8; coshw, sinhw, cosw, sinw

) boundary-layer thickness

Bo angle between velocity vector and isobars

v¥ zonal velocity v for large R

¥ dimensionless Stokes stream function

7 dimensionless radial variable

€ dimensionless parameter

€* dimensionless parameter related to Rossby number
Fy,F,,A,B,C,D,a,,f,,7,,0, functions of  only

Gy, G, functions of £ only

v, terms in expansion of ¥ in ascending powers of ¢*
Y, function of § only

A, B, C', D' a1, f1,7) constants of integration

a(f); o see (4-18); a surface on which v =0

x(7) an arbitrary function of r

1. INTRODUCTION

Page or equation
where first used

(1-6)
(1-6)
(1-6)
(1-5)
(1-1)
(1-3)
(1-7)

(2-22

(2:17) a = fh, a, = f.h
p- 87,z ="Hh¢

(215)
(2-20)
(2-21)

(following (3-23))

(3-27)
(3-39)
(3-42)

(4-9)
(4-11)
(4-11)
(4-11)

(4-16), (4-24), (6-9)
(4-18), (4-34)

(4-12)
(4-24)

p. 101, (5-18)
p- 105
(

4-28)

This work has been largely inspired by a certain experiment (Fultz 1951) which has been
conducted recently at the University of Chicago and is an attempt to solve some of the
hydrodynamical problems which it presents. In the experiment water is contained in a
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 83

cylindrical vessel (a dishpan) of 15 cm radius to a depth of 2 cm, and the effects of heating
the horizontal base of the vessel near the side have been observed for various rates of
rotation of the vessel about its central axis. The heating is approximately symmetrical
about the central point of the base, and the difference in temperature between the outer
portions of the fluid and the central portions is usually between 5 and 15° C. Two principal
régimes have emerged which are referred to as the low- and high-rotation cases. In the
former the motion at the free surface is predominantly symmetrical about the central axis,
and any variations in the transverse direction are small. In the latter, the motion is markedly
asymmetrical in character, consisting of distinct finite-amplitude wave patterns in the
transverse direction. With a fixed heating system at the base the transition from the low-
to the high-rotation régimes occurs when the angular velocity of the dishpan attains a
certain critical value and the change in the nature of the flow takes place rapidly at this
value. The experiment acquires considerable interest, due to the fact that there are marked
similarities between the high-rotation régime and observed flows of the earth’s atmosphere.

In the present paper only the symmetrical forced flow will be discussed. It is convenient
first of all to deal with the problem of zero rotation in order to establish a method of attack
which exploits the fact that the fluid is shallow. We consider next the forced motion when
the dishpan rotates, in order to obtain the essential mechanism of the low-rotation régime.
This is first done approximately by omitting all the non-linear terms. These terms are shown
to be small when the temperature difference between the axis and the rim is sufficiently
small. Subsequently the non-linear terms are incorporated by using the method of small
parameters.

It will be assumed throughout that the flow of the liquid relative to the dishpan is small
compared with the flow of solid rotation, and that the flow of heat within the fluid takes
place entirely by molecular conduction. The former assumption is quite valid for the
experiment, but the latter assumption is justifiable only in the low-rotation régime when
steady conditions persist. -

When the non-linear terms in the equations are omitted it is shown that with a given
symmetrical heating distribution on the base there is a certain forced symmetrical flow
established relative to the rotating vessel. This symmetrical flow exists for all values of the
rotation (which enters into the problem through a rotation Reynolds number R) and there
isno possibility of breakdown of this flow contained within this solution. Itappears that with
the appropriate values which pertain to the low-rotation experiments (R ~42) the sym-
metrical flow on the linear theory consists essentially of a ‘westerly’ zonal flow which in-
creases linearly with the height above the base (except in a thin boundary layer where the
zonal velocity is proportional to the third power of the height) and whose radial variation
depends upon a Bessel function of order one. The orders of magnitude of the velocity
components in this case are approximately correct, and the observed zonal velocity maxi-
mum near 7-5cm from the central axis is a feature of the solution. This zonal flow which
develops for large R may be called the ‘thermal wind’ of the problem, since it arises in a
similar way to that in meteorological theory. But even though some of the important
features of the observed low-rotation flow are already present in this solution there are also
some incorrect features. One such feature and one which could be anticipated is the
absence of any horizontal stress at the base, this being essentially connected with the

I1-2
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84 T. V. DAVIES ON THE FORCED FLOW OF A

ignoring of the non-linear terms. With no heating at the base the liquid of course has no
relative motion to the boundaries, but the present problem is so arranged that the total
heat supplied to the liquid is zero. Itis assumed that no heat escapes at the free surface and
the curved sides of the liquid and that as much heat is withdrawn at the base as is supplied.
These are ideal assumptions which will not be exactly satisfied in the experiment but never-
theless serve as a first approximation. In the corresponding problem for the earth’s atmo-
sphere, which has been borne in mind throughout the present problem, such assumptions
are likely to be more valid. Using an angular momentum argument it follows that if the
angular velocity of the vessel about its central axis is constant the supply and withdrawal
of equal quantities of heat to the liquid will imply that the moment of the boundary stresses
about the axis of rotation must vanish. Thus the zonal motion must contain both easterlies
and westerlies. Stress upon the base is connected with the non-linear terms in the equations,
and when these are introduced into the problem we might therefore expect to find both
easterlies and westerlies in the solution for the zonal flow. In §§ 4 to 6 it is shown that they
are actually present in the solution and that their existence is due solely to the non-linear
terms. The introduction of these terms is effected by the method of expansion in powers
of a non-dimensional parameter ¢* which is identical with the Rossby number, U/Cy,
apart from a factor of 2. This non-dimensional number has been introduced into meteoro-
logical and model problems by Fultz (1949). The velocity field within the fluid has not
yet been determined experimentally. It should be added that the stress of the air upon the
free surface has been ignored throughout, otherwise the angular momentum argument for
westerlies and easterlies is untenable.

The solution obtained here is not complete, since the conditions at the side walls are not
exactly satisfied, but this is not of great importance, as may be noted from a result in §§ 2
and 3 relating to the position of the zonal velocity maximum. The exact symmetrical
régime investigated here is unlikely to be reproduced in the laboratory due to variable
roughness at the base of the vessel and to small departures from symmetry in the heating
-of the base. These effects are probably responsible for 1ntroducmg small departures from
symmetry in the low-rotation régime.

In setting up the problem cylindrical co-ordinates (7, ¢,z) are used and there are six
dependent variables (u,,v,, w,py,p;,1;), where u; represents the velocity component in
the direction r increasing, v; in the direction ¢ increasing, w; in the direction z increasing.
Connecting these six dependent variables are the following six equations:

du, o} dpy o Uy 20v ) 1 1,0 Oy )
mla - r) == v 2ag) T3y = gy Til (1)

do, | uv, ap, ( 5 25u1) 1 %~ ap, )
(g +) = =iV e ) ey = = A (12)

d 2

g =—ﬁ~gp1+ﬂV2w1+3ﬂ X p‘ —gptul (1-3)

dp, _ _ Oy dvy | dw, )
‘a?’{'ple ”*0) (97’+ +“7¢+ 0z’ (1 4)
p1 = po—a(11—Tp), (1-5)
prJe, S —pyy = JEVT 4+ @, (1-6)

”dt
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 85

2
liquids w1th1n sufficiently small temperature ranges. If we take this range to be from 20 to
30° C we have the following numerical data:

20°C p, = 0-998, 2343,
30°C  p, = 0995, 6780,
o« = 0-000, 25563.

a is the inverse of the coefficient of cubical expansion. The viscosity # and the specific heat
¢, vary with temperature, but these effects cannot be incorporated. Equation (1-6) is the
equation of heat transfer (see Goldstein, Modern developments in fluid dynamics, 2, 603) which
contains the convection, divergence, conduction and dissipation terms.

With no heating in the experiment, rotation of the dishpan produces solid rotation of the
water; with heating the velocity field shows a departure from solid rotation, but these
departures from solid rotation are always less in magnitude than the flow of solid rotation.

Suppose that suffix zero indicates the steady state of solid rotation and let 2 be the angular
velocity of the dishpan about its central axis, then if we write

w=u, v=rQ+v, wy=w, py=pytp, p=pt+p, Ty =T+T, (1-7)
the equations governing the basic steady flow of solid rotation will be

-—. Equation (1-5) is an equation of state which is valid for

% — por€22,

3!?0 _ )
@ - O) (1 8)
opo

9z &Po-

/

The rotation speeds in the experiment vary from 1 to 4 revolutions per minute from ‘low’
to ‘high’ rotation respectively, so that € varies approximately from 0-1 to 0-4 radian per
second. This has the effect of making 7()?/g have the maximum value of about 0-007, and
it follows that the curvature of the free upper surface of the fluid can therefore be ignored.
Hereafter the free surface will be taken to be the horizontal surface z = %, and the bottom
of the dishpan to be z = 0.

The equations governing the symmetrical departures from the steady state of solid rotation

will be as follows: v p
'00(”297_}_1002 —= QQv) prQQ? = o, 4L (1-9)
9 W W o0 - F, 1-10
e I o)
dw  dw g
'00( 0r+wﬁz) =—5§—gp+ﬂFz, (1)
(?p dp Ju u ow\
us +w¢?z+ <ar+ +(9z) =0, (1-12)
p=—aT, (1-13)
, oT 0T du u Ow
pOva( 5w az) p(ar+ +a) JEV2T + @, (1-14)
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86 T. V. DAVIES ON THE FORCED FLOW OF A

In the first equation if we use approximate values from the experiment v = 1 cm/s, p, = 1,
Q =1, we obtain 2p,v = 2 and prQ2 = 0-0187, hence we shall ignore henceforth the term
pr&2in (1-9). It may be noted that the dissipation term ®, which appears in (1-14) is of the
second degree in the velocity components.

As stated earlier we now consider in succession three cases of the above equations:

(a) zero rotation, with heating, no variations in time or ¢. No non-linear terms;

(b) rotation €2, with heating, no variations in time or ¢. No non-linear terms;

(¢) influence of non-linear terms upon (4).

2. ZERO ROTATION, NO VARIATIONS IN TIME OR ¢. INO NON-LINEAR TERMS

The equations for the departure motion (1-9) to (1-14) now become

0= aﬂh%V%M—) (21)
v
0= ,u(Vzvvﬁ) ) (2-2)
ap >
0=—7 —&+uVu, (23)
J J
E" (Tu) +a—z (Tw) = O, (2’4)
= —OéT, (25)
0= V2T, (2-6)
2
where V2= ; e i gr+ ; 5. The normal type of solution of these equations from which the

general solution can be derived may be obtained by making the following substitutions in
the above equations:
u = U,(2) Ji(fr),

v =20,

w = Wi(z) Jy(fr),
T:W@dm
p = pi(2) Jo(fr),
ﬁ:M)dM-

Here /£ is a constant which is at our disposal and Jy(x), J;(x) are the Bessel functions of
orders zero and one respectively. When we make use of the results

(V2 3) V@) ) = () (U203
VIR L) = ) W,
) AP,

(2:7)

< gy — Br( ),
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 87

it is easily shown that the above equations are reduced to the following system of ordinary
differential equations in U, W}, 7}, P, and p;:

0 = fB+-p(U7 = F2U)), (2-9)
0 = — Py +gaTy +u( W' — W), (2:10)
BU+W =0, (2:11)
T7—p?T, = 0. (2-12)
If we eliminate P, between (2-9) and (2-10) we obtain

Ty = gt W =28 W+ WY, (2:13)

and it follows then from (2-12) that W] satisfies the equation
(D} -2 =0, D=1 (2:14)

Let us consider now the boundary conditions in the problem. At the bottom of the fluid the
velocity components « and w must vanish, and we shall assume the heating is prescribed
there also by taking the heating function on the bottom to be d77/dz = HJy(fr), where H
is a constant. At the free surface we shall assume that the fluid is subject to no stresses and
this implies that w = 0 and du/dz = 0 at z = 4. Here also we shall assume that there is no
heat flow across the free surface so that d7/0z = 0 at z = k. Hence we have the following
six boundary conditions:

dT;
Wi(0) =0, U,(0) =0, —dzl z=0: H,
215
/ T, (215)
Wi(h) =0, Uj(k) =0, e 0.

These boundary conditions can all be expressed in terms of W] and its derivatives by using
the equations (2+9) to (2-12), and we then obtain

wi(0) =0, W (k) = o,
wi(0) = o, 2 Wilh) =01 (g.16)
W1(0) —28°W7(0) +4*W(0) = H—i@, Wy (k) — 262 WY (h) +[*W (k) = O.

The set of equations (2-14) and (2-16) will then define W(z) uniquely.
It is convenient in this problem to introduce a non-dimensional parameter a defined by

a = [h, (2-17)
and to write z = A§. In this case the problem becomes
d -
(D2—a?)3 W, =0, Dfaga
wi(0) =o, m(1) =o, [ (2-18)
wi(0) =0, wi(1) =o,
2 5o
W(0) —2a2W7(0) +a* W} (0) = fifi"fi, W(1) —2a2 W7 (1) +afWi(1) = 0.
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88 T. V. DAVIES ON THE FORCED FLOW OF A

We consider first of all the exact solution of the problem presented by (2-18), and for
this purpose it is more convenient to return to the equations (2:9) to (2-12). Thus we

immediately obtain
_ hHcosha(1—§)

L= asinha ’ (2:19)
and the W](z), equation (2-13), becomes
o ey _ G H _
(D2—a?)2 W, = ,usinhaCOSha(l &)
ax
= acosh a(1—§) =k, cosha(1-¢§), (2-20)

where « = gah3H/u has the dimensions of velocity. The complete solution for W] may be
written in the form

W, = (dy+4,€) sinh a(1 =€)+ (4 + 4yE) sinh aZ 45 1, £ cosh a(1—E).

When we use the conditions (2-18) to solve for the constants 4; we obtain the following
solution for W;:

— 8a? sinh? a( —cosh a) W) = (acosh a—sinh a) {sinh a(1—§)

a
sinh a sinh a

+«(a cosh a—sinh a) sinh af

a? . .
— K(sinh P sinh a) Esinh af

~+kasinh a(sin‘iw—cosh a) g2cosha(l—§). (2-21)
The above solution, derived by the exact method, possesses two disadvantages: the nature
of the variation of W, (§) with { is relatively obscure, and the corresponding solutions in
later developments of this theory cannot be obtained in this way. Therefore before pro-
ceeding to a discussion of the solution (2-21) it is of more importance to establish an approxi-
mate method which will not only clarify the nature of the I/} (£) but will also be applicable
to later problems.

One of the important features of the experiment is the fact that the fluid depth is small
compared with the radius of the dishpan, and the method we introduce makes use of this
feature. It will be noted from (2-7) that if we are to satisfy the side condition

Uu=v=0, r=r, (2-22)
it is necessary that we choose £ so that
i(fry) = 0. (2:23)

This will define an infinite set of f’s which we shall denote by g, (s = 1,2,3,...). For the
present we confine our attention to the first zero of J; which gives

ﬁl 7'0 — 3.83.

Hence the parameter a defined in (2:17) will in this case have the value @ = 0-6. The possi-
bility therefore arises of expanding the solution for W] ({) in ascending powers of a? (since
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 89

it is only the square of @ which appears in (2:18)). Itis evident from (2-18) that the leading
term in such an expansion of W must commence with a term which is independent of a?;

thus we assume that
Wi(&) = wo(§) +a*w, (€) +a‘wy(§) + ..., (2-24)

where the functions w,(¢) are dependent upon § alone. If we use (2-11) we obtain the corre-
sponding form of the solution for U, (§), namely,

UL() = 2 u0(8) +ay (€ +auy(©) + .o (2:24)

where the functions «(£) are dependent upon £ alone. When (2-24) is inserted in (2-18)
and the successive coeflicients of a? equated to zero, the following systems of equations are
obtained. The first set contains wy(§) only

wy (€) =0,

wy(0) =0, wy(1) =0, (2-25)

w)(0) =0, wl(1) =0,

wy(0) =0, wy(1) =0;

the next involves w,(§) and w,(§), ,
wy (§) = 3wy (£),

w,(0) = 0, wy(1) = 0, (2-26)
w((0) = 0, wi(1) =0,

wi(0) = 2w{(0)+«, wi(1) = 2wi(1),
and so on to sets which involve w,, w, and w,, etc. Thus we may solve successively for wy(£),
w,(€), wy(&), .... The success of this method depends essentially upon the rapidity of con-
vergence of the series (2-24). The solution for w,(£) is readily obtained and is merely the-
quartic ‘ A
4

wy(§) = 5 4i€2(1—€) (3—26), (2:27)

where 4, is a constant which is not determined at this stage due to two of the boundary
conditions in (2-25) being identical. Proceeding to the solution for w,(£) from (2-26) the
following situation arises. We must solve

wy (€) = 34,

subject to the stated boundary conditions. The general solution for w,(£) will be

wy(€) =§T2 2+—§f—§3+f—f 4%%5%%‘%&. (228)
In order to satisfy wj(0) = 2w (0) +«, we must have
By = —§4,+«,
and in order to satisfy wj(1) = 2’w’1”( 1) we must have
By = —44,,
hence these two equations determine 4, and Bj,
A4, =—«k, By=14x, (2-29)

Vor. 246. A. 12
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90 T. V. DAVIES ON THE FORCED FLOW OF A

and thus the constant 4, which is not determined by (2:25) becomes determinate at the
second stage in order to make the set of equations (2-26) self-consistent. We thus obtain

wo(6) = —g 64 (1—8) (3—2), (2-30)

and evaluating w, (£) we obtain

_ By 4 KE? 2 3
() = 2 (1) (3-2) 2 (1-8) (39— 1ef— 14448, (231)

Here B, is a constant which is not determined by (2-26) but is determinate at the third stage.
This leads to B, = —i%« and the solution (2-31) for w,(£) becomes considerably simplified.
There is no necessity to proceed to any higher approximations, since when we combine
the above results and substitute in (2-24) we obtain

(e) = U B2 0 e e —ae) 0@}, (2:32)

The question now arises to what extent does this solution give a good approximation to the
exact solution in (2-21). When the exact solution (2-21) is expanded in ascending powers of
a? it has been verified that (2-32) is true to the stated order. Thus the approximate method
is sound. It will be noted also that when we insert the value of a> = 0-36 we find that the
correction term in (2:32) is at most a 4 9, correction of the leading term, hence the method
is adequate for the discussion of the present type of problem.

In order to discuss the details of the solution it is sufficient to take the leading term in
(2-32), and when we do this we obtain the approximate formulae for the velocity com-
ponents # and w. These are given by

— 2o E(6—15E+8E2) Jy(fr) + O(),
(2:33)
w = =22 E(1—£) (3—2£) Jy(4r) + O(a?).

The side conditions z = 0, v = 0, w = 0 at r = r, have been partially considered already
(2-22). It remains to satisfy w = 0 at 7 = r,, and this we shall do approximately by con-
sidering only the leading terms of w in (2-33). If #, and £, are two solutions of (2-23) and
Ky, k, are two heating constants, it follows that we may construct solutions for z and w of

the form _
u = BT 9 8+ 20 80)

w=—EU=E B2 e gan) B

If we now choose & :k, so that

S Ko
Jo(Bor)  —Jo(Bri7o)

we may satisfy the condition w = 0 at 7 = r,. Hence we obtain the following solutions:

— 2 E(6— 158+ 880 o(Baro) Jir7) — 4 Sulhrro) (Ao (2:34)
= — & E2(1—=&) (3—2E) {Jy(Baro) Jo(Brr) — Jo(B170) Jo(Bar)}- (2:35)

~ >-4|§
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The form of heating on the bottom which produces the above motion is evidently

T

Q=7 = ﬁ%{%(ﬂﬂo) Jo(Brr) = Jo(Pr70) Jo(B7)}- (2:36)

z=0

Thus there is an exact correlation between the vertical velocity w and the heating function
on the base. It will be observed that with the present solution no heat is passing through the
side r = 7, of the vessel, and the net flow of heat Q* through the bottom is given by

Q* — or f " Q(r) dr = 0, (2-37)

I | | L l |
0 0-002 0-004 0-006

vertical velocity (—w,(§)/«)

Ficure 1. Vertical velocity profiles against height for values w=1, 2, 3, 4, 5, 6.

Yh

4hi-

| ]

l [ ! l | ]
—-0-016 -0-008 0 0-008 0-016

radial velocity/«

Ficure 2. Radial velocity profiles against height for values w=1, 2, 3, 4.
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92 T. V. DAVIES ON THE FORCED FLOW OF A

since J;(f,7) = J;(f,7,) = 0. Hence as much heat is removed at the base as enters. With
the above solutions (2-34), (2-35), (2:36), we can construct the general solution of the
problem with an arbitrary heating distribution on the bottom.

1-0—

5 10 15

! | l | | I |

Ficure 3. Velocity profiles in the radial direction when w=0 at the side wall (not drawn to
the same scale). Curve 1, zonal velocity, radial velocity; curve 2, vertical velocity.

1

0-5

~-0-5

| L

-1-0

Ficure 4. Velocity profiles in the radial direction when w is finite at the side wall (not drawn
to the same scale). Curve 1, zonal velocity, radial velocity; curve, 2, vertical velocity.

In figures 1 to 4 it will be noted that the vertical velocity attains a maximum value at
about z = 0-6A, that the radial velocity attains a maximum value at z = 0-25%, a zero at
z = 0-64 and a minimum value on the free surface. These are the principal features of the
vertical variation. The details of the radial variation of « and w may be observed in figures
1 to 4, where it will be noted that the maximum value of # occurs about 5 cm from the central
axis. If we disregard the boundary condition w = 0 at r = r, and use only the condition
u = 0 at r = r, the position of the maximum radial velocity is shifted to about 7-5 cm from
the central axis. This indicates that the viscous conditions at the side of the vessel are
unimportant in the present problem.
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3. RoTATION (), WITH HEATING, STEADY SYMMETRICAL SOLUTIONS. INO NON-LINEAR TERMS

In this case we have the following equations governing the flow relative to the dishpan:

J
—2Qp,v :——5‘:-)—1—/4(V2u—%), (3-1)
2Qpou = ,u(V%—%) , (3-2)
0= —g—‘Z—I—gchJr,quw, (3-3)
J Jd
3 () o (rw) = 0, (3-4)
0= JkV2T, (3-5)
where V2 is the same as in § 2. The normal types of solution can be obtained in the present
case by taking u=U,(z) J,(fr),

v =V(2) Ly(fr),
w = Wy(z) J(fr), >
b= Pi(z) Jy(pr),

- p=pi(2) S(fr),
T =T(2)Js(fr),

for with these substitutions we obtain the following ordinary system of equations, involving

(3-6)

U, W, Pand T;: —2Qp,V; = P +u(U7—B2U,), (3:7)
2Qp, Uy = w(Vi—=p), (3-8)

— P{+goT, + (W —W,) = o, (39)

pU+W] =0, (3-10)

T — T, = 0. (3-11)

The boundary conditions at the top and bottom are now
U =V=W=0, T,=H, z=0;
Uy=Vi=W=T=0, z=1 }

corresponding to the same physical conditions as in § 2. We now make the transformation
z = h¢ and introduce the two parameters

a=ph, R=

(3-12)

Qpoh?
2P0t . (3:13)
The first parameter is geometrical and has occurred in § 2, the second parameter is a rota-
tion Reynolds number for the motion. In this case the above set of equations can be arranged
conveniently in the form ah

(D?—a?) U1+2R1V1+;P1 =0, (3-14)
—2R, U, 4 (D2—a%) 1] =0, (3-15)
h kcosha(l—§)
22y v ANl .
(D2—a?) W, ﬂDP1~ Zsmha (3-16)
alU,+dW; = 0, (3:17)
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94 T. V. DAVIES ON THE FORCED FLOW OF A

where « is defined following (2-20) and where we have used (2-19). It is most convenient
asin § 2 to derive the differential equation satisfied by W}, and it is easily shown by elimination
or otherwise that ] now satisfies the equation

(D2—a?)3 W, +4R*D2W, = 0. (3-18)
This equation tends to (2:18) as -0 or R—0. It remains now to express the boundary
conditions (3-12) in terms of W] and its derivates. It follows immediately that four of these
conditions will be Wi (0) = W' (0) — O’l

M(1) = wi(1) =o.

The condition V}(0) = 0 is a little more troublesome but leads ultimately to the condition

(3-19)

Wi(0) —2a*W7(0) = a%, A (3-194)
while the condition V(1) = 0 leads to
wey  ka )
Wi(l) = snha’ (3-195)

The six conditions (3-19), (3-194), (3:194) constitute the complete set of boundary condi-
tions at the bottom of the fluid and at the free surface.

We can now proceed to the solution of (3-18) and its associated boundary conditions by
the expansion method examined in §2, and for this purpose we make the assumption
that W] can be expanded in the form

Wi(E) = wo(€) +-a®w, (&) +a'wy() + ... (3-20)
Interest centres principally on the leading term, since it is likely, but not proved here, that

the succeeding terms will make small contributions to the ultimate value of W (£). It then
follows that w,(§) satisfies the following system:

w(E) + 4R2u(E) ~ 0,
w(0) =0, w,(1) =0, )
O =0 w0 =0,

)

wi(0) =0, wy(1

H

In the solution for w,(£) it is convenient to use a parameter » in place of R which is defined
by the equation 0 = Rt = (Qpyh2/u)*. (3-22)
Without going into any detail it follows that the general solution for wy(£) may be written
conveniently in the form
wy(€) = Ay+ A, E+sinwE[Aysinh wf+A;sinhw(1—£)]
+sinw(1—§) [4,sinh wf+ A5sinh o(1 —£)],

and the six boundary conditions then uniquely determine the six constants 4;. The detail
of the solution need not concern us, it is sufficient to state the result:

405,51 (5, 0_1;%) o(8) _ 5 §.(8, € —s5,6,) — (S, Cy—sy¢,) sin of sinh o
+ (5,6, C +$,8t—¢, 8, C) sinw§ sinh w(1 —§)
+ (5,6, Cr— 38, —¢,8, Cy) sinw(1 —§) sinh 0
— (8, Cy—s,¢;) sinw(1—§) sinhw(1—§), (3-23)
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 95

where for convenience we have used the following notation: C| = coshw, §, =sinho,
¢, = cosw, §; = sinw. It may be verified that (3-23) satisfies the system (3-21). We consider
the solution (3-23) in some detail before determining the other velocity components. It is
of interest first of all to deduce the form of wy(£) when Q (or ) is small, in order that we may
judge the effect of a small rotation upon the flow. This involves a considerable amount of
expansion of the various constituents of (3-23) and we quote just the final result:

4
) _ ge(1-ps-2)+ o[- 196+ 6 —spi28] 4] (3:24)
It will be observed that as {— 0 the expression for w,(§) given here tends to that in the non-
rotating case (2-30). The second term within the brackets is always negative when 0<<{<1,
hence the first effect of a small rotation upon the vertical velocity is to decrease it at all
points. This decrease of wy(§) with increasing rotation is generally true as we increase ()
from zero to infinity (see figure 1). It is easily shown that when the rotation {2 becomes
sufficiently large the asymptotic form of wy(£) at all points 0<<£ <1 will be given by making
v, large in (3-28). This leads to the result

wy(€) 1
2~ 3-25
—Kk 40t ( )
This result indicates that apart from the boundaries, where the vertical velocity is zero,
the vertical velocity tends to assume a constant value. In this connexion it is of interest to
note that for small values of §, that is, near the bottom, the expression for the vertical velocity
from (3-23) becomes w 2
wol€) _ & (3-26)
—K 4w
Hence the value of —1/4w* which obtains in the free stream will be attained in a vertical
distance § given by 0% = w2, so that
d=wl=R" (3-27)
This thickness d is of course the boundary layer at the bottom, which decreases with in-
creasing Reynolds number. It may be mentioned here that this boundary-layer result holds
also for the vertical velocity at the free surface, that is, the free-stream vertical velocity
decreases to zero in a layer of thickness § at the free surface.
We proceed now to the radial component of velocity U,(z). This must be expanded in

the form 1
Uy = ug(€) +auy (€) +a*uy(§) + - (3-28)

and the leading term of this development is given by

uy(€) = —w(€).- (3-29)

Hence we obtain

3 —
4081515, C/‘( $10) %o(6) _ _ (81C,—s,¢;) {sin 0§ cosh wE+ cos w§ sinh wé}

+ (516, C;—5,8F—¢5, C)) {—sin wé coshw(1—&) +cosw sinhw(1—§)}

+ (516, Cy =518, —¢,8, C)) {sinw(1 —§) cosh wf —cosw(1—§) sinh v}

+ (8, Cy—s,¢;) {cosw(1—§) sinhw(1 —§) +sin w(1—E) coshw(l1—§)}.
(3-30)
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96 T. V. DAVIES ON THE FORCED FLOW OF A

When Q increases from zero the successive profiles of uy(§) are indicated in figure 2. It
will be observed that u,(¢) decreases rapidly to zero with increasing », and when we in-
vestigate the asymptotic form of u,(£) for large » we find that u,(£) ~ =% in 0<£<1. Thus
the radial component of velocity decreases exponentially with w compared with the alge-
braic decrease of w,(§) (see equation (3-25)). We may quote two results of interest. At the
free surface for small w; we have
%(1) _ ,L{_ ot } | :

Tl et (3:31)

which indicates the rapidity of decrease of u,(1) with increasing ;. At the bottom we have

the approximate formula o £) )

_ (Cr—¢y) (S1—51) .
R Ty .

K

Consider next the zonal velocity. This may be expanded in ascending powers of @ in exactly
the same form as u, and we write

TE) = - 00(E) +avy(€) +@y(8) + .. (3:33)
It follows from (3-15) and (3-17) that
vo(€) = —2Ruy(€),

hence Uo(8) = —2Rw, (&)
(there is no arbitrary constant here since vy(1) = 0, w,(1) = 0). The final formula for the

zonal velocity is therefore £
(€)= 2R | (8 dg, (3-34)

and we then obtain

S
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51515, C;_slcl) %(6) _ 515,(8,C,—s51¢4) §~% (S, Cy—s;1¢,) {sin w€ cosh wf — cos wg sinh W}
1
+% (s576,C;—5,87—¢15,C)) {S; —sinwé coshw(1 —&) —coswé sinhw(1—§&)}

+% (s516,C;— 38, —¢,5,C)) {—s,+sinw(1 —§) coshwf+cosw(l—§) sinhwi}

——Ql‘w (8;C—s,6)) {5, C;—¢; 8] —sinw(1—§) coshw(l —§) +cosw(l—§) sinhw(1—£)}.
(3-35)

The expansion for v,(&) which is valid for small rotation speeds is given by

v(6) _ E’E{(gs_§£4+;§5) +£ (—19g3.1 254 OFT 4 5r8_2¢9) 4 } (3-36)
kK 24 ee 420 °® * e e

This formula shows that v,(§) =0 for all { as -0, and that near the bottom vy(§) oc &3,
which indicates a very slow increase of zonal velocity with increasing height above the
bottom. On the free surface with small values of @ we have

vo(1)  ? : 190t } 3
k 160 1 1134°7° (3-37)

This suggests that v,(1) will probably increase from zero to some maximum value with
increasing w. This is, indeed, true, for when we use (3-35) and plot v,(1) against @ the curve
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 97

(figure 5) shows that vy(1) attains a maximum around w = 3 and thereafter falls off to zero.
The corresponding curve of vy(4) against w is included in the same diagram in order to
indicate the relative magnitudes of the zonal velocity at z = £ and z = 4. For large values
of the Reynolds number the asymptotic formula for v,(£) is given by

v() E—1/w
Yols) 6 1/ 38
0-020+
z=h
X 0015
2
g
3 B
g o010
S z="%h
0-005{—
| ] | | | { | ]
0 2 4 6 8
w

Ficure 5. Zonal velocity against w at z=/ and z=14A.

hence the flow tends to become a uniform shearing flow with its maximum at the free
surface. Here also, however, v,(§) -0 as w—>co. Thus all three velocity components tend
to zero as the rotation increases to fairly high values, and it would appear therefore that
when Q is sufficiently great the fluid is essentially in solid rotation. This suggests that the
energy which is derived from heating may be more readily available for asymmetrical
flows as the rotation rate increases.}

It may be noted also that at the free surface the ratio of radial velocity to zonal velocity
is given by (1) 10 1—ghot... (3:39)
vo(1)  BR1—y3350t..0

provided the Reynolds number is sufficiently small. When o is moderately large we have

tanf, = —

up(l) 1 )

T T aw (3-40)

up(1) N__l- ;
hence 2o(1) 50" (3-41)

T Alternatively, the mechanism of the symmetrical flow may be different.

VoL. 246. A. 13
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98 T. V. DAVIES ON THE FORCED FLOW OF A

From these results (3-39) and (3-41) we can determine how quickly the flow at the free
surface becomes ‘geostrophic’. There are no longitudinal variations of the pressure p in
the present problem, hence the isobars are concentric circles. The angle £, in (3-39) is the
angle of the resultant velocity vector to such a circle (more precisely with the positively
drawn tangent). We note that when R = 31, then f, is approximately 45°. When R = 42,
w = 6-5 approximately, f, is approximately 44°—this corresponds to the low-rotation
régime. Within the fluid, since the radial velocity decreases exponentially, it follows that
geostrophic flow will be attained more quickly than on the free surface.

There is no necessity to take this velocity investigation further. The satisfying of the
condition w = 0 at r = r, will proceed exactly as in §2, and the radial profile of v will be
precisely the same as the radial profile of . Thus the maximum value of the zonal velocity
will occur at about 5 cm from the central axis (with w = 0 at r = 15) and at 7-5 cm from the
central axis with w non-zero at the side. It has been pointed out recently during a discussion
at the University of Chicago that the term v%/r becomes of similar order of magnitude to
the Coriolis term in the low-rotation experiments. This will doubtless influence the quanti-
tative aspects of the present investigation but is unlikely to affect the qualitative picture
which has been presented here. It will be possible to obtain some insight into the effect of
this particular non-linear term in § 6.

It will be noted that the result (3-38) combines with (3:6) to give

v= %~ o (1) i), (342)

when the Reynolds number R is sufficiently high. This result may be deduced simply as
follows. From a consideration of the orders of magnitude of the vertical, radial and zonal
velocities, the pressure and temperature fields as functions of the Reynolds number, it
follows that the equations (3-1) to (3-5) reduce to the following set when R is sufficiently
large:

d
2Qp,v = g, (3-43)
T = % 3-44
gal' =7, (3-44)
V2T = 0. (3-45)

When the 1/w term of (3-42) is omitted the velocity v* and the temperature
T = —hH cosh a(1—§) Jy(fr)Jasinh a,

with @ small, represent solutions of (3:43) to (3-45). Such a v* is known in meteorology as
the thermal wind.

dv
4., THE EFFECT OF THE INERTIA TERM W —

dz

It has been shown in § 3 that when the rotation Reynold’s number R becomes sufficiently
large (R>15 say) that the flow tends to become purely zonal. R cannot be made in-
definitely large, however, because in some parts of the field the non-linear inertia terms then
assume an increasing importance, namely, in those parts where the boundary-layer effects
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 99

are sensible. These effects are present of course at the very lowest Reynolds numbers but
may be ignored then because of their smallness; we may say that the results of §3 are
adequate in the range 0 <w <35 provided H is sufficiently small.

Since the inertia terms are non-linear and their influence is difficult to assess, it is pro-
posed to investigate three of the non-linear terms only and to investigate them separately.
In general, the effects of the non-linear terms will not be additive, but in the present
approximate method of dealing with these terms it so happens that we may add together
the effects of these three inertia terms, and nothing is lost, therefore, by the above separation.
In the present section we investigate the effect of the term w(dv/dz) which appears on the
left-hand side of the zonal equation of motion. It is of significance that in this term the
factor dv/dz quickly attains its asymptotic value dv*/dz when R>15. We adopt an iterative
procedure and shall approximate to this term by writing it in the form w(dv*/dz), where
v*, defined in (3-42), is the zonal velocity which develops as R becomes sufficiently large.
Itis not actually necessary to perform this substitution, for the method we use could equally
apply to the term in its original form, but the detailed working is made rather easier by the
substitution of v* for v and the result to the present approximation is not affected. Since we
have replaced v by its asymptotic value for large R we can ultimately study the solution of
the equations only in the large R range. In order to study this term in the small R range we
should have to replace v by the expression (3-36), but since interest centres principally in
the range of large R all this section will be devoted to this range. The approximation made
above is not sufficient to make the equations tractable, and I shall approximate further in
the equations of motion by taking V2=02/0z2 in the Navier-Stokes terms, that is, the
differentials with respect to r are ignored. This may be justified because of the shallowness
of the liquid contained in the dishpan and is in fact a similar approximation to that made
in earlier sections where the velocity components are expanded in powers of a. A similar
approximation is permissible in dealing with atmospheric flow on the spherical earth.
The equations governing the flow are taken to be

i} 0%
~2Qpy =~ Lt p5s, (+1)

ov* %
pot 5~ +2Qp,u = Ko (42)

_ o :
0= —;9—Z+g06T, (4-3)
d d

(?_r(m) +3; (rw) = 0, (4-4)
V2T = 0. (4-5)

It will be noted also that in equation (4-3) the term u(0%*w/0z?%) is omitted; evidently this
does not prevent us satisfying the boundary conditions at the surfaces z = 0 and z = #,
and it is the satisfying only of the side condition w = 0 at r = a that is invalidated by this
step. This side condition has been ignored also in § 3, and it will be shown later that the solu-
tion of the above equations is similar to that of the previous section when the term w(dv/dz)
tends to zero.

13-2
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100 T. V. DAVIES ON THE FORCED FLOW OF A
With the conditions (2-15) imposed upon 7" we are led to
hH cosh a(1—¢)

T=- asinha JolBr)- (4-6)
From (3-42) we have wE_ K (fr) (4-7)
0z 2hw2a 1V
If we eliminate the pressure between (4-1) and (4-3) we obtain
(?v T %
—20py 5 = —gu o (4-8)

Eliminating v between (4-2) and (4-8) leads to

d*u +4Q2'0 +2Qp° dv* _ gud*T
0zt 2 w0z udzor

If in this equation we replace z by A as in § 2 and replace dv*/dz using (4+7) we obtain
0t  402p%h* h Hgofh*sinh a(1—
u ,00 K _ gofh*sinh a(1—¢§) J(Br).

Po
&+ + u2 Ut ap wh(fr) )/ sinha
We now introduce a dimensionless Stokes stream function ¥ which is such that

W iy
— 2 — 2 .
ru = —«h a0 W Kkh 2 (4-9)
and the equation for ¢ is then
Y O dy _sinha(1—¢) )
A —eh ) G = T ), (410)
where o is defined in (3-22) and where
Kkh, €
n = pr, 62—/30, 6*24‘&7« (4-11)

The term on the right-hand side of (4:10) arises from the temperature field. The quantity
¢in (4-11) is a non-dimensional constant which, through «, contains the constant / in the
numerator. Since H, which is related to the temperature difference between the central
axis and the rim of the dishpan, can be made as small as we please, it follows that ¢ can be
made as small as we please. It appears, however, that the experimental value of ¢ is of the
same order of magnitude as 4w*, and thus the results obtained here may not give good
quantitative agreement with the actual experiment but will serve as an adequate guide to
the qualitative effect of the inertia term. The term which involves ¢ in (4-10) arises from the
term w(dv*/dz) in (4-2), and the above analysis shows that this term can be neglected in
the problem only when the difference in temperature between the rim and centre of the
dishpan is sufficiently small. Since we wish to investigate the influence of this term upon the
flow of § 8, it is convenient to look for a solution of (4-10) which will be of the form

¥ =Yote¥y+e* o+, (412)

where the ,’s are independent of ¢*. It may then be anticipated that ¥, represents essen-
tially the flow of § 3 while ¢, ¥, ... will represent the departure from the -, flow due to the
term w(dv*/dz). Since ¢* can be made as small as we please the convergence of (4-12) can
always be arranged.
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 101

When we substitute (4-12) in (4-10) and equate to zero successive powers of ¢¥ we obtain

5 1 —
Gt 2 W) 0, (414)

and so on. We limit the present investigation to the determination of ¥, and ¥, but if
desired higher approximations can easily be obtained. We consider first the function .
From (3-12) ¢, has to satisfy the conditions

%O:O: 5205

¢0=O: §=1,

%Y Y :
a—é’:O, £=0; (4:15)

and further restrictions will be imposed later. The complete solution of (4:13) will be

fo— — cosha(1—§)
" a(40*+a*)sinha

nJy () + Iy + Asin of sinh w€ 4 Bsinh of sinw(1 —§)
+Csinhw(1—§) sinw+Dsinhw(1—§) sinw(l—£), (4-16)

where F,, 4, B, C and D are functions of 7 only. Using the same notation as in (3-23) it
follows from (4-15) that

cosha )
FO—I—DS]-S‘I - a(4a)4—|—d4) Sinhdiﬁ]l(ii)’
1
FO+AS1~91 - a(4w4+d4) Sinha”-.]l(”>,
. (417)
Bs, + €S, —D(Cy5,+516,) = Jm’?ﬁ(ﬂ),
a
ACre, =BG —Co+D = 20%(4w*+a*) sinha”Jl(”)' )
We can solve these equations for 4, B, C and D and thus write (4-16) in the form
J,
o= ettt st —cosha(L=) +a(®)+ Fly) Gol®) (418)

where
_,_sinesinhef sinw(1—{) sinhw(1—£)
Gold) =1~ 518 515
St +8,Ci6—5,6,C
S181(8,C1—5,0)

S%Sl_l_clSlCl—slchl% . ‘
Slsl(Slcl——Sl(;l) ESInw(l"_Q Slnha)g,

(4-19)

Lsin wf sinhw(1—§) —

and
a(§) = A’ sinwf sinh wé+ B’ sinh o sinw(1 —§) +C'sinhw(1 —§) sinw

+D’sinhow(1—¢§) sinw(1-§),
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102 T. V. DAVIES ON THE FORCED FLOW OF A

with «(0) = cosha, «(1) =1, a’(0) =asinha, «"(1) =4? In §3 the velocity field was
obtained in ascending powers of a, and if we continue with that procedure here it will be

noted that “(5) -1 “‘Go(g) +0(a2).
Hence we obtain from (4-18)

yo = ") G (6) —cosha(1—£)} + Fy(y) Gol£),

4wta?

. 1 .
that is, Vo= it 11 (1) Gy(&) + Fy(n) Go(€) +-higher powers of a. (4-20)

By comparing (4-19) and (3-23) it will be noted that
d0tn(8) — —KGo(£). (4-21)
Consider now the function ;. We have from (4-14) and (4-20)

%Hw (%1_4@40 IO PAOENAY )‘g;} (4:922)
and since the particular solution of the differential equation
ot 40— Gl
is Uy =§(5— 0)/16w4,
it follows that the complete solution of (4-22) will be
1 = 465~ )| = ka2 a(n) )+ () G+ W (+23)
4w'a dy

where
Y, = F, +a, sinh € sin wf +f; sinh o€ sinw(1 —&) +y,sinhw(1—§) sinw§

+0;sinhw(1—§) sinw(1—§), (4-24)

F,, a,, f;, 7, and &, being functions of 7 only. The function ¥, has to satisfy the same boundary
conditions as ¢,, and hence we have the following four relations between these five functions:

F 40,855 =0, \
5 1 dF,
FytanSys = 3 (= ool ) +4(0) )
5 dF (4-25)
Brsi+y18—=0(Crsi+5161) = _Zw{ 40)442’7‘]0(’7) 1 () + () 377—0},
Gy(1 1 dF,
Gt Crmat = S L) o+ ho -

These equations we can solve for a;, £}, y; and &; in terms of F};, F; and the various Bessel
functions. Before proceeding any further with ¥, and this set of equations we consider the
zonal velocity v, since in satisfying the boundary conditions upon », namely,

v

v =0, ‘g:()a ggzoa g: 1, (4'26)
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 103

we thereby define the functions / and F;. From (4-8) we have

v Hgoc/z 25 Kph? 0%y
09 rh® 0g*’

and if we integrate this with respect to { we have

2Qp L cosha(l—¢€) Ji(n) +

Hgah?f . J
20,0 =~ S5 sinna(1—8) 400) + %Y 12050,

where y is an arbitrary function of 7. Introducing the constants x and » we can write this
expression for v in the form

kh %) '
2w2asmhasmh a(1—&) i (y )_[_W(?—gfl_x' (4-27)
In order to satisfy the first condition in (4-26) we choose ¥ so that
K kh (0%
X0 = g0 =5y (565) (4-28)
. ) K kh (0%, My
Since e mcosh a(1—=§&) J,(n) + 2{ 0§40+ e 0§41+ } (4-29)
it follows that we can satisfy the second condition in (4-26) by choosing F; and F; so that
1 b (0% )
5oia 1) +5, (T?)g=1 =0, (4-30)
(7‘%)
= = 0. 4-31
(a§4 £m1 ( )

Evidently this process can be repeated if higher-order terms ¢, are required in (4-12).
Using (4:20) and the result Gjy(1) = 4w* it follows that

o4 1
R = ) — (),

and thus, bearing in mind the definitions a = gk, n = fr, it follows from (4-30) that

Fy(n)=0. (4-32)
Thus we have, as in § 3, Vo= ——1(1—)1425 1d1(n) Go(é), (4-33)

and the equations (4-25) simplify by the vanishing of the last term on the right-hand side
of each equation. We now solve the equations (4-25). It is evident that the terms F, and
7Jo(n) J1(n) can be dealt with separately. Corresponding to the former the solution for
W, is Wi = Gy(§) F,(y), and corresponding to the latter the solution is

C, cl+S Gy(1) cl
s bpdyJ; {sinh o sin wf 5w? w . .
W = L60'a? S5 + SC =50, © sinh wf sinw(1—¢§)

sinhw(1—§) sin wﬁJ

5ndyJ;
= Togigz C1(6)- (4-34)
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104 T. V. DAVIES ON THE FORCED FLOW OF A

Accordingly, the complete solution for ¥, will be

5
— Gol8) (1) + g3 1o Gr (6)- (4:35)
From (4-23) and (4-31) we have

;i—[(%{é(5~00)}] { i 2erJ}+G”( ) Fy(n) |—16w4a277JJG“’( ) =0,
that is, 160 4a277J JHGH (1) +4G (1) +5GT (1)} +GF(L)F () = 0.

The function G, (£) defined in (4-34) satisfies the differential equation G¥(§) +-40*G,(§) = 0,
and thussince G;(1) = 1 we have G¥(1) = —40* Combining this with G§(1) = 40*we have

G///
R+ 1t i1+ 5 —5) =0,
1 G”/
and hence () = 1o {4~ wﬂ )}. (4-36)
The function ¢, is thus given by
G”l
1 = Ttk €5 Go) + Gof 4~ 1) 4 56,). (+37)

It will be noted that ¢, vanishes at 7 = 0 and also at r = a provided J;(fa) = 0 as in previous
sections. Thus the central axis of the dishpan and the side are streamlines as required.
The function ¥, unlike ¢, has a zero at the first vanishing point of J,(fr), and this fact has
interesting consequences which will be mentioned later. In (4-37) it is easily shown that

w(S sl) _ 203(C)—¢))?

Goll) =—g ¢ =5c> OW =750 =56

(4-38)
The formula for v in (4-27) can be expressed now entirely in terms of the G (§) and Bessel
functions. The complete formula for ¢ is

1

GI// 1
V== 4“)442’7‘[100—'_16 4 277JJ{ §(5—GO)+GO(4_ 0( )

)+5G }+O(e*2) (4-39)

and the complete expression for v is

e*J,

202a 8wba

v = g &)+ Gi(0) - G36) +
%) G —~G5(0)) |+0(e*)|.
(4-40)

%[ £G3(6) +367(6) —3G5(0) +567(6) —5G7(0) + (4

In (4-40) the function sinha(1—§) has been expanded in powers of a. In order to get a
clearer idea of the behaviour of these solutions it is necessary to investigate G,(£) and
G, (&) alittle more closely. As was stated earlier the solutions obtained in this section will be
valid for large R only, that is, @>3-5 say. We can investigate therefore the asymptotic
behaviour of G, and G, for large w. Here there are two cases to be considered:

(a) large o, 0<£<1, large v, i.e. outside the boundary layer,

(b) large w, small £, small g, i.e. within the boundary layer.
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 105
Case (a) Qutside the boundary layer

In this region we can replace the hyperbolic functions by the appropriate exponential
functions, and it follows that when o is sufficiently large

GolE) ~ 1+ 0(c2%).

Consequently all the required derivates of G (§) in (4-40) are O(e**) and may be ignored.
The function G((1) defined in (4-38) behaves like 2w® for large w and consequently G, (£)
and its derivates are O(e~“%). Thus when v is sufficiently large we can write (4-40) in the
form

y — K
2w3a

£01)+ 5530 G5 0) + A —36300)~567(0) — (+-2) 65(0) ] ..

8wba

In general it is easy to show that
_ 2078, —5) (C1—¢))

Go(0) = ; 4-41
0( ) SICI—SICI ( )
m 2w3(2¢,C —f—Sz—(,‘z—SZ__CZ

G(0) = 24 iS‘lCll—sllcl 1= (1) (442)

and when o is sufficiently large G(0) ~ 20w?, Gj(0) ~ —4w?. Likewise we have G (0) ~ 22,
and hence 3

v g BE— 45 (1= 2 ) )+ 0(e)). (4-43)

When ¢* = 0 it will be observed that the formula (4-43) for » reduces to that in (3-38).
It will be noted from this formula for v that in addition to having zeros on 7 = 0 and r = a
the zonal velocity now vanishes also on the surface

=1 nm(i-o)- (444)

The surface ¢ defined by (4-44) exists within the fluid where the Bessel function J(7) is
negative, that is, from the first zero of Jy(y) at # = 2-4 to the value y = 3-8, where J,(7)
first vanishes. Aty = 3-8, Jy(7) has its minimum value, hence the surface ¢ has its maximum
height above the base at the side of the dishpan and lowers towards the interior. Above ¢
we have v > 0 and below ¢ we have v <0, that is, ‘ westerlies’ above and ‘easterlies’ below o.
In order to find out where ¢ meets the base £ = 0 of the dishpan we must proceed to case (4).

Case (b)  Inside the boundary layer

Here £ and ¢ are small but w large, and we can expand the trigonometric and hyperbolic
functions which involve w§ in ascending powers of wé. We obtain thereby

Go(§) = w2 —203E3 + Lttt — 5088 ..., (4-45)
G (£) = E—0wf?+§0°8° — 50 +550°° ..., (4-46)
the terms to order & having been obtained by expanding (4:19) and (4-34) respectively,

and the terms of higher order by using the differential equations which G, and G, satisfy.
If we now return to (4-40) and substitute for G, and G, wé obtain

o =SB (ot )+ ) (160~ ).

VoL. 246. A. 14
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106 T. V. DAVIES ON THE FORCED FLOW OF A

When ¢* = 0 it will be observed that v is of order &3, a result which was obtained in § 3 and
which is responsible for producing the zero horizontal stress at £ = 0 for that flow. When
¢* == 0.the height £ enters as a linear quantity in the ¢* term, and hence there will be a finite
stress associated with this term. When ¢* <= 0 also the surface v = 01is given approximately by

w?? = —3e*Jy(n). (4-47)

Hence the surface o meets the base £ = 0 at the zero 7 = 2-4 of J(y) and exists in the region
n>=2-4. Thus the present case confirms case (@) that the surface o exists in 2-4<<y<(3-8.
We now carry out the same investigation for ¢. We have from (4-39)

J n
¥ =0 (6= 1) [ EGy— 56+ G4~ H

) 156 ]+ 0(6*2)}, (4-48)

and thus outside the boundary layer we have, for sufficiently large o,

g == 2 gea ] - a2+ o). (1-49)

When ¢* = 0, ¢ is a function of 7 only and the flow is therefore entirely in surfaces r = con-
stant. When ¢* =+ 0 the extra term’'which is due to w(dv/dz) produces a radial flow of magnitude

u= 1 ) ). (4:50)

This u function vanishes at the central axis » = 0, is positive in the range 0<<y<<2-4, zero
againaty = 2-4 and is negative in the range 2-4 <7 < 3-8;in other words, we have an outflow
in 0<7<2-4 and an inflow in 2-4 <y <3-8.

The vertical velocity field is obtained from the formula

xa® 0y

— 4-51
) (4-51)

and w is accordingly given by

w— { J+e*( 4§+4~~)(J2 J%)—|—O(e*2)}. (4-510)

40 Aot
When ¢* = 0 we reproduce the result contained in (3-25) that the vertical velocity is down-
wards in 0<y <24, zero at 7 = 2-4 and upward in 2-4 <7< 3-8. The additional term in w
when ¢* 4=0 has a linear decrease with height to vanishingly small values near § = 1, whilst
in the radial direction this term produces an upward motion in 0<<y<1-44, a downward
motion in 1-44 <5< 3-1 and an upward motion in 3-1 <7< 3-8. Thus the upward flow in
the outer portion of the dishpan will be augmented by the additional term, and the down-
ward flow near the central axis will be diminished but the region where previously w was
zero, namely, at 7 = 2-4, is now a region of down-flowing currents. It may be significant
that this last-mentioned region corresponds to the subtropical regions of descending air in
atmospheric motion on the spherical earth. It is of interest also to investigate conditions
at the free surface £ = 1. From (4-48) it follows that at the free surface we have

w= £ L6y~ 1oy Go(n) -5+ (4~ E

)GO( )+ 5G)(1 ]+0 *2}
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 107

It 1s easily shown that

dy @08 —s)?
Go(1) = S, Cr—s16,°
m _ 2(")3(01—61)2
Goll) = $,C1—s16,
/ _Gy(1 1
Gi1) = oG- =B (1= +5 1= Cis),
and thus when o is sufficiently large Gy(1) ~—w, Gi(1) ~ 203, G1(1) ~w(1 —I—gl&) . Hence
we have «J, - o
“lg=1=m —w+46*Jy(n) + 0(e*%)},

and thus, as in (3-40), there is a weak inflow at the free surface with ¢* = 0 which becomes
augmented in 2-4 <7 <<38-8 but diminished in 0 <y <2-4 when ¢* ==0.

In the boundary layer near £ == 0 we proceed as follows. From (4-48), (4-45) and (4-46)
we have

R RN GO
hence within the boundary layer

= A e+ o).

Thus u is directed radially outwards when ¢* = 0, but when ¢*=0 the outward flow is
diminished in 0 <7< 2-4 and augmented in 2-4 <y <3-8.

We observe finally that the moment of the horizontal stresses at the base about the central
axis is given by

e v
27 .
f . 2mur 3z s dr. (4-52)
To the order ¢* this is evidently proportional to
3-8
[ ) Hn) an, (53)

38
and since this equals I:%:;ZJ %(77)]0 it evidently is zero.

ud
5. THE EFFECT OF THE INERTIA TERM 2 (vr)

The effects of this term are investigated in exactly the same way as the term w(dv/dz)
of § 4. The v factor of this term is replaced by v*, and the equations governing the flow are
taken to be (4-1), (4-3), (4-4), (4-5) together with

” 19, . 0%
potfy - (%) +20) = 3. (51)

Using the definition of v* in (3-42) this becomes

{2w2+2€2( ) Jo(n )} 352' (5-2)

14-2
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108 T. V. DAVIES ON THE FORCED FLOW OF A
Equation (4-8) can be arranged in the form
dv K Pu
— 902 _ ou .
20 &~ s hacosha(l g)Jl(ﬁ’r)—}—ags, (5-3)

and when v is eliminated between the equations (5-2) and (5-3) we obtain

%"“40}4%_‘“6(5{—5)*]0(77) U= _sirli;llaSinha“ —§&) Ji(n). (54)

It is convenient to introduce the Stokes stream function ¥ defined in (4-9) since we can
then make use of the results of § 4. The equation for ¥ is

9 d ha(l—
o+ g el 5 = " ). (5:3)
Substituting the ¢* expansion of (4-12) we obtain
0° d inha(1—
%«‘)Hw‘*alg :@g%l—a—g)vﬂ(v), (5-6)
0° i} (7

and so on. With the same conditions (4-15) and (4-30) 1mposed upon ¥, and upon the zonal
velocity it follows that the function ¥ is the same as in (4-33), namely,

Vo= 531 (1) Gol), (58)
so that (5-7) becomes
a0 2 = Lo A (- 1) 4. (59)

It may be verified that the particular solution for ¥, arising from (5-9) is

4 1 4 2 !’
Vi = gtz 1) )| —EGi -+ 56G,— 5+ 266, (510)
and that the complete solution for ¥, is given by

Y1 = Y1+ (1) Go(§) +o sinhwf sinwé + ) sinh of sinw(1—§) +y,sinh (1 —§) sinwé,

(5-11)
where 0181 = ot h {5+ Go(1) (1-2)),
1 5
Brsi+715 zmﬂﬁ%{d, (512)

2 n !
. (1-2) Gr 1) —sGy(1)
Ciei—$ G 7161=m7i‘]1‘]o 502 .

Consider now equation (5-4). When it is integrated with respect to £ we obtain

— 202 =

k. 0% )
asinhasmh a(l _g) Jl(ﬁr) +;9?_“2“) X(T)a
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ROTATING VISCOUS LIQUID WHICH IS HEATED FROM BELOW 109

where y(7) is an arbitrary function of 7. Replacing « by its expression in terms of ¥, (4:9),

we obtain xa 0%

K
Y7 7 outasinh aSlnha( —£) () _i“m?g‘g‘“f‘)((r)- (5-13)

The function x(r) is chosen so that v = 0 at { = 0, hence
K By
X0) = gz i)~ (385), (514)

The upper boundary condition dv/d§ = 0 at £ = 1 leads to the same results as in (4-30) and
(4-31). The former is satisfied by the ¢, of (5-8), provided sinh « is replaced by a. The latter
leads to the definition of F;(5). Using (5-11) and (4-31) we have

1 , ,
32w4a277‘]1‘]{ E2Go+ 586, ”‘5§+ §G } +F (n) G§ (1) — 0o Sy 5, = 0. (5-15)

If we substitute for a, from (5-12) it follows that

Rl = it h b1 -G 1) (5:16)

40* w

Consequently the complete solution for ¥, is given by

nJy J{ £2G) + 5EGy— BE -+~ ga(;+8|:1_0'” 1) 1 }

—e@+m©),  (517)

= 32(0442
where  H,(£) = a;sinhwé sin wf+ f] sinh wf sinw(1 —§) +7]sinh w(1—§) sinwé, (5-18)

and oy, f1 and 7] are the solutions of the equations

' ' 2
oSy 5 = 5-+Gy(1) (1“5>>
! ’ 5
Prsi+715, = > (5-19)

’ ’ ’ 1 2 U ’
0 Crey—p1Cr =116, = 202 {(1 _5) Gg (1) “SGO(I)}~
When v is sufficiently great Gi(1) ~ —w, Gy(1) ~ 20* and thus (5:17) becomes approximately
1 3
i~ g M) Si0) (1=5,), (5-20)

provided the position is outside the boundary layer. Since this asymptotic value for y, is
independent of £ it follows that the radial velocity arising from it is zero. The vertical
velocity distribution using (4-514) will be (outside the boundary layer)

Kke* 3
w="42 (1 —%) (J3—J2), (5-21)
and thus, as in § 4, we have ascending currents in 0<<#<<1-4 and 2-4 <5< 3-8, with descend-
ing currents in 1-4<<7<2-4. Thus as far as the field of vertical velocity is concerned the
d . .
term 17—637 (vr) tends to augment the term w(dv/dz), the magnitudes of the vertical velocity

being largely the same.
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110 T. V. DAVIES ON THE FORCED FLOW OF A
We consider now the zonal velocity. From (5-13) and (5-14) we have
K 1 ” 2kac*w?(03 a3
0= g~ (GO -GEON+ 2L (G8) ), (52

and using (5-17) the second bracket becomes
* i " 4 " n 2 iv 6 4 "
Giia | —EGH(€) — 6EGE(€) +9G4(£) —9GH(0) + BEGH(€) +- £GH () + {G4(E) — Gi(0)}

+E) —H1(0)+8(1- % 1) (66— 6x10)) |

If the point £ is outside the boundary layer, then as w becomes large this term behaves like

Ke®_ JJ[ 9G3(0) — > G4(0) — HY(0) (1 - _Gi(n) ~) e 0].

64 40t

If we now use the results (4-41), (4-42) and (4-38) this becomes

K J|:——18(u2—12w—8(1—i) (—4(/)3):].
6408q 170 20

The leading term will be «e*J, Jy/2w3a, and consequently the expression for v becomes

K

» —
20%a

Ji(n ){ﬁ——+ Jo(n )} (5-23)

If we compare (5-23) and (4-43) it will be observed that the effect of the term zr—l(% (vr) is
precisely the same as the w(dv/dz) term in the formation of easterly and westerly zonal flow

patterns. Hence when the two terms are combined the resulting » = 0 surface will be

E=L 2T (2asy<ss) (5:24)

outside the boundary layer. The moment of the surface stresses about » = 0 is zero as in § 4.

6. THE EFFECT OF THE TERM v2[r

We now introduce the centrifugal term »?/r into the radial equation of motion and
consider the effect of this term upon the flow of § 3. The equations are simplified by taking
v*/r in place of »?/r. We then have

w* i) 0%u
~20p0—20" = L2, (6:1)
0%
2Qpgu = p75, (6-2)

and the remaining equations are identical with those in (4-3) to (4-5). When we use the
i function defined in (4+9) we obtain from (6-2)

0% 2kw*ady

BTy %
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by introducing the usual non-dimensional quantities. Upon integration and use of the
boundary condition ¥ = 0, dv/d = 0 at £ = 1 we obtain

v 2kw’a
v _ _2kwa 63
e (63
Equation (6-1) may be written in the form
2 1 KPol ( _l)l _gkP0T | kad’y
20 v+2(1)2ﬂv g 0) 77‘]1(77) - U ar + 7 agg b

and by eliminating » between this equation and (6-3) we obtain

cosha(l1—§)
asinha

St ofE— ) L)y = - Pi(n). (64

We investigate a solution of (6-4) of the form (4-12) and consequently the successive ¥,
functions in that development satisfy

Tty =~ cosha(1—§) 1), (6:5)
aﬁgl +4oty, = -—4‘04( ) Ji(7) ¥os (6-6)

and so on. The function ¥ satisfies the same conditions as in §4 and hence is given by
(4-33), so that (6-6) becomes

o, = (E—2) T300) Gif©): (67)

It is easily shown that the complete solution of (6-7) is given by

1

’ 2 ’ 8
1 = 535 {0)| — G+ 3EGy+ 26Gy + 56—+, (68)

where
¥, = Asinh f sin wf+ Bsinh wé sinw(1 —§) + Csinh w(1 —§) sinw§

_ +Dsinho(1—£) sino(1—£). (6:9)

In order to satisfy the conditions (4-15), which apply also to ¢, we choose 4, B, C and D

so that 1 g
DSy51 = 550 J%{a},

1 2 8
AS,s, — WJ%{G (1)(1_5)+Z)“5}’

Bs,+CS, — D(C,s,+8,¢,) — 3214a2J%{—g},

w L em(-2)—asi)
AC,¢,—BC,—Ce+D = 32w4a5J2 e .
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From (6-3) we have the following formula for the zonal velocity:

- d
4 £
2
— =22 [ (o eri+..) d. (610)
It is sufficient to investigate the above solutions for large » outside the boundary layer. In
this case we have 1
Vo~ — g a1h(1), (6-11)
i~ iz (B ) T30) (6:12)
17 3202 w) "N
Since u = ——%-g it follows that the additional radial flow due to the v?/r term will be
2
—«J}(n) /4wy, which is, as expected, everywhere inwards. Since w = % % it follows that

the additional vertical flow due to the »?/r term will be K(§ —%) J, J{/20%), which is positive

in the range 0<<7<1-85 and negative in the range 1-85 <7 <3-8.

When (6:12) and (6-11) are substituted in ( 6-10) it becomes approximately
2kw3a 1 1 AT o

22— e =2) 1) + o (1 —5) T2 +0(e*).
Outside the boundary layer ({>1/w) therefore the additional term produces an easterly
flow, but this can nowhere exceed the main westerly flow and serves only to reduce the
westerly flow. It is evident from (6-10) that this centrifugal term does not contribute to
the surface stresses.
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